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Density-Based Multiscale Data Condensation
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Abstract—A problem gaining interest in pattern recognition applied to data mining is that of selecting a small representative subset
from a very large data set. In this article, a nonparametric data reduction scheme is suggested. It attempts to represent the density
underlying the data. The algorithm selects representative points in a multiscale fashion which is novel from existing density-based
approaches. The accuracy of representation by the condensed set is measured in terms of the error in density estimates of the original
and reduced sets. Experimental studies on several real life data sets show that the multiscale approach is superior to several related
condensation methods both in terms of condensation ratio and estimation error. The condensed set obtained was also experimentally
shown to be effective for some important data mining tasks like classification, clustering, and rule generation on large data sets.
Moreover, it is empirically found that the algorithm is efficient in terms of sample complexity.

Index Terms—Data mining, multiscale condensation, scalability, density estimation, convergence in probability, instance learning.

1 INTRODUCTION

HE current popularity of data mining and data ware-

housing, as well as the decline in the cost of disk
storage, has led to a proliferation of terabyte data ware-
houses [1]. Mining a database of even a few gigabytes is an
arduous task for machine learning techniques and requires
advanced parallel hardware and algorithms. An approach
for dealing with the intractable problem of learning from
huge databases is to select a small subset of data for
learning [2]. Databases often contain redundant data. It
would be convenient if large databases could be replaced by
a small subset of representative patterns so that the
accuracy of estimates (e.g., of probability density, depen-
dencies, class boundaries) obtained from such a reduced set
should be comparable to that obtained using the entire data
set.

The simplest approach for data reduction is to draw the
desired number of random samples from the entire data set.
Various statistical sampling methods such as random
sampling, stratified sampling, and peepholing [3] have
been in existence. However, naive sampling methods are
not suitable for real-world problems with noisy data since
the performance of the algorithms may change unpredic-
tably and significantly [3]. Better performance is obtained
using uncertainty sampling [4] and active learning [5], where
a simple classifier queries for informative examples. The
random sampling approach effectively ignores all the
information present in the samples not chosen for member-
ship in the reduced subset. An advanced condensation
algorithm should include information from all samples in
the reduction process.

Some widely studied schemes for data condensation are
built upon classification-based approaches, in general, and
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the kNN rule, in particular [6]. The effectiveness of the
condensed set is measured in terms of the classification
accuracy. These methods attempt to derive a minimal
consistent set, i.e.,, a minimal set which correctly classifies
all the original samples. The very first developement of this
kind is the condensed nearest neighbor rule (CNN) of Hart
[7]. Other algorithms in this category including the reduced
nearest neighbor and iterative condensation algorithms are
summarized in [8]. Recently, alocal asymmetrically weighted
similarity metric (LASM) approach for data compression [9]
is shown to have superior performance compared to
conventional k-NN classification-based methods. Similar
concepts of data reduction and locally varying models based
on neural networks are discussed in [10], [11], [12].

The classification-based condensation methods are, how-
ever, specific to (i.e., dependent on) the classification tasks
and the models (e.g., k-NN, perceptron) used. Data con-
densation of more generic nature is performed by classical
vector quantization methods [13] using a set of codebook
vectors which minimize the quantization error. An effective
and popular method of learning the vectors is by using the
self-organizing map [14]. However, if the self-organizing
map is to be used as a pattern classifier, the codebook vectors
may be further refined using the learning vector quantization
algorithms [14]. Competitive learning [15] can also be used to
obtain such representative points. These methods are seen to
approximate the density underlying the data [14]. Since
learning is inherent in the methodologies, the final solution is
dependent on initialization, choice of learning parameters,
and the nature of local minima.

Another group of generic data condensation methods are
based on the density-based approaches which consider the
density function of the data for the purpose of condensation
rather than minimizing the quantization error. These
methods do not involve any learning process and, therefore,
are deterministic, (i.e., for a given input data set, the output
condensed set is fixed). Here, one estimates the density at a
point and selects the points having “higher” densities,
while ensuring a minimum separation between the selected
points. These methods bear resemblance to density-based
clustering techniques like the DBSCAN algorithm [16],
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popular for spatial data mining. DBSCAN is based on the
principle that a cluster point contains in its neighborhood a
minimum number of samples, i.e., the cluster point has
density above a certain threshold. The neighborhood radius
and the density threshold are user specified. Astrahan [17]
proposed a classical data reduction algorithm of this type in
1971, in which he used a disc of radius d; about a point to
obtain an estimate of density at that point. The points are
sorted based on these estimated densities and the densest
point is selected, while rejecting all points that lie within
another disc of radius dy about the selected point. The
process is repeated until all the samples are covered.
However, selecting the values of d; and dy is a nontrivial
problem. A partial solution using a minimal spanning tree-
based method is described in [18]. Though the above
approaches select the points based on the density criterion,
they do not directly attempt to represent the original
distribution. The selected points are distributed evenly over
the entire feature space irrespective of the distribution. A
constant separation is used for instance pruning. Interest-
ingly, Fukunaga [19] suggested a nonparametric algorithm
for selecting a condensed set based on the criterion that
density estimates obtained with the original set and the
reduced set are close. However, the algorithm is search-
based and requires large computation time.

Efficiency of condensation algorithms may be improved
by adopting a multiresolution representation approach. A
multiresolution framework for instance-based learning and
regression has been studied in [20] and [21], respectively. It
uses a k-d tree to impose a hierararchy of data partitions
which implicitly condense the data into homogeneous
blocks having variable resolutions. Each level of the tree
represents a partition of the feature space at a particular
scale of detail. Prediction for a query point is performed
using blocks from different scales; finer scale blocks are
used for points close to the query and cruder scale blocks
for those far from the query. However, the blocks are
constructed by simple median splitting algorithms which
do not directly consider the density function underlying the
data. We propose in this article a density-based multi-
resolution data reduction algorithm that uses discs of
adaptive radii for both density estimation and sample
pruning. The method attempts to accurately represent the
entire distribution rather than the data set itself. The
accuracy of this representation is measured using nearest-
neighbor density estimates at each point belonging to the
entire data set. The method does away with the difficult
choice of radii d; and d» as in Astrahan’s method discussed
above. In the proposed method, k-NN density estimates are
obtained for each point and the points having higher
density are selected subject to the condition that the point
does not lie in a region “covered” by any other selected
point. A selected point “covers” a disc around it with area
inversely proportional (by a factor o, say) to the (estimated)
density at that point, as illustrated in Fig. 1. Hence, the
regions having higher density are represented more
accurately in the reduced data sets compared to sparse
regions. The proportionality factor (o) and k used for
k-NN density estimation controls the condensation ratio and
the accuracy of representation.
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Fig. 1. Multiresolution data reduction.

The condensation algorithm can obtain reduced sets
which represent the data at different scales. The parameter &
acts as the scale parameter and the data is viewed at
varying degrees of detail depending on the value of k. This
type of multiscale representation of data is desirable for
various applications like data mining. At each scale, the
representation gives adequate importance to different
regions of the feature space based upon the probability
density as mentioned before. The above scheme induces a
scale which is both efficient in terms of density estimation
error and natural to the data distribution.

It is observed from experiments that the multiresolution
approach helps to achieve lower error with similar con-
densation ratio compared to several related data condensa-
tion schemes. The reduced set obtained was found to be
effective for a number of data mining applications like
classification, clustering, and rule generation. The suggested
algorithm is also found to be scalable and efficient in terms
of sample complexity, in the sense that the error level
decreases quickly with the increase in size of the condensed
set. In the next section, we describe briefly aspects of
multiscale representation.

2 MuLTISCALE REPRESENTATION OF DATA

Multiscale representation of data refers to visualization of the
data at different “scales,” where the term scale may signify
either unit, frequency, radius, window size, or kernel
parameters. The importance of scale has been increasingly
acknowledged in the past decade in the areas of image and
signal analysis and computer vision with the development of
several scale inspired models like pyramids, wavelets, and
multiresolution techniques. Recently, scale-based methods
have also become popular in clustering [22] and density
estimation. In these methodologies, the concept of scale has
been implemented using variable width Radial Basis Func-
tion Network [23], annealing-based clustering with variable
temperature [24], and variable window density estimates.
The question of scale is natural to data condensation. At
a very coarse scale, the entire data may be represented by
only a few number of points and at a very fine scale all the
sample points may constitute the condensed set, the scales
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Fig. 2. Representation of a data set at different levels of detail by the condensed sets. “.” is a point belonging the condensed set, the circles about the
points denote the discs covering that point. The two bold circles denote the boundaries of the data set.

in between representing varying degrees of detail. In many
data mining applications (e.g., structure discovery in
remotely sensed data, identifying population groups from
census data), it is neccesary that the data be represented in
varying levels of detail. Data condensation is only a
preliminary step in the overall data mining process and
several higher-level learning operations may be performed
on the condensed set later. Hence, the condensation
algorithm should be able to obtain representative subsets
at different scales, as demanded, in an efficient manner.
The proposed method for data condensation, discussed
in Section 1, obtains condensed sets of different degrees of
detail by varying a scale parameter k. It may be noted that
such variable detail representation may be achieved by
other approaches also, including random sampling. How-
ever, unlike random sampling, the scales induced by the
proposed method are not prespecified by the sizes of the
condensed sets but follow the natural characteristics of the
data. As far as efficiency of the scaling procedure is
concerned, it may be noted that, in most of the multiscale
schemes for representing data or signal, including wavelets,
efficiency is achieved by a lenient representation of the
“unimportant” regions and a detailed representation of the
“important” regions, where the notion of importance may
vary from problem to problem. We have followed a similar
principle in the proposed condensation algorithm where, at
each scale, the different regions of the feature space are
represented in the condensed set based on the densities of
those regions estimated at that particular scale. Fig. 2
illustrates the concept of variable scale representation. The
data consists of 2,000 points selected randomly from two
nonoverlapping circles of radius 1 unit and centers at (2, 0)

and (5, 0), respectively, (Fig. 2a). Figs. 2b, 2c, 2d, and 2e
show representation of the data by condensed sets at
different levels of detail. It can be seen that in Fig. 2b only
two points cover the entire data set. In Fig. 2c, four points
are used to represent the entire data set. Fig. 2d and 2e are
more detailed representations of the data.

For a particular scale, the basic principle of the proposed
data condensation algorithm involves sorting the points
based on estimated densities, selecting the denser points, and
removing other points that lie within certain distances of
the selected points in a multiresolution manner. A non-
parametric method of estimating a probability density
function is the k-nearest-neighbor method. In a A-NN-based
estimation technique, the density of a point is computed
based upon the area of disc about that point which includes
a fixed number, say k, other points [25]. Hence, the radius of
the disc is smaller in a densely populated region than in a
sparse region. The area of the disc is inversely proportional
to the probability density function at the center of the disc.
This behavior is advantageous for the present problem from
the point of view of multiresolution representation over
different regions of feature space. This is the reason that the
k-NN density estimate is considered in the proposed
condensation algorithm.

Before we present the data condensation algorithm, we
describe in brief the k-NN-based density estimation techni-
que in the next section.

3 NEAREST-NEIGHBOR DENSITY ESTIMATE

Let xi,X2,...,xny be independent observations on a
p-dimensional random variable X, with a continuous
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probability density function f. The problem is to estimate f
at a point z.

Let d(x,z) represent the Euclidean distance between x
and z. A p-dimensional hypersphere of radius r about z is
designated by S, ,, i.e., S., = {x|d(x,2z) < r}. The volume or
Lebesgue measure of the hypersphere S, , will be called A,.
Let us describe a nonparametric method for estimating f
suggested by Loftsgaarden [25].

Let k(N) be a sequence of positive integers such that
limy_, k(IN) = 00 and limy_.o k(N)/N = 0. Once k(N) is
chosen and a sample x;,Xs,...,xN is available, ryy), is
determined as the distance from z to the (k(N) + 1)th nearest
neighbor of z among x;, X, ... xy. Hence, an estimate of f is
given by

[NORLGUEE

(1)
Th(N).z
It can be proven [25] that the density estimate given by (1) is
asymptotically unbiased and consistent. It may, however,
be noted that k-NN estimates suffer from the “curse of
dimensionality” problem in high-dimensional spaces [26].
A condensation algorithm should obtain a subset which
is representative of the original data distribution. We
discuss some measures of the accuracy of such representa-
tions in terms of the error in kNN density estimate
discussed above.

3.1 Measures of Error in Density Estimate

Let x;,...,xy be N independent samples drawn from a
distribution f. The closeness between two estimates ¢g; and
g2 of f is measured by a criterion of the form

J= %; D(g;(xi), 92(xi)),

where x; is the ith sample, and D(.,.) is a measure of the
distance between g, (x;) and g,(x;). It may be noted that .J is
a random variable and an estimate of the quantity J, where

J:ﬂﬂ:/mwmmmv@w

In our case, we have a density estimate fv for f, from
{x1,...xy} using the k-NN density estimation method
already described. Any other density estimation technique,
like kernel estimates, may also be considered. Now, we like
to choose n points, n << N, from xi,...,xy such that the
density estimate &, obtained from these n points is close to
fn, where n is not predetermined. In the next section, we
present a method that automatically provides the value for
n and the set of n points for a given {xi,...,xy}. It may be
noted that J measures the difference between estimates fy
and &, and not the error of each of these estimates with
respect to the actual distribution. However, if N is large, it is
known that fi is a consistent estimate of f [25] (for suitable
values of k, as mentioned in (1)). Hence, a small value of J
indicate, closeness of &, to the actual distribution f.

For D, we use the form similar to log-likelihood ratio
used in classification [19],
I (i)

D(fr(x2), nlx:)) =

In

: (2)
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A second possibility is a modified version of the kernel of
the Kullback-Liebler information number [19] which
attaches more weight to the high-density region of the
distribution

D(fn(xi), (7)) = | f(xi)

an(x;).In

3)

an(xi) '

We use both of these quantities to measure the efficacy of the
reduction algorithms in subsequent sections. If the estimates
are close enough, both the quantities are close to zero.

4 PROPOSED DATA REDUCTION ALGORITHM

The proposed data reduction algorithm involves estimating
the density at a point using the methods described in the
previous section, sorting the points based on the density
criterion, selecting a point according to the sorted list, and
pruning all points lying within a disc about a selected point
withradius inversely proportional to the density at that point.

Method. Let By = {x1,X2,...,xn} be the original data
set. Choose a positive integer k.

1. For each point x; € By, calculate the distance of the
kth nearest neighbor of x; in By. Denote it by 7.

2. Select the point x; € By, having the lowest value of
Tkx; and place it in the reduced set E. Ties in lowest
value of 7., may be resolved by a convention, say,
according to the index of the samples. From (1), it is
evident that x; corresponds to the point having the
highest density fy(x;).

3. Remove all points from By that lie within a disc of
radius 27y, centered at x; and the set consisting of the
remaining points be renamed as By. Note that since
rﬁ’xj (where p is the dimension of the feature space) is
inversely proportional to the estimate of the prob-
ability density at x;, regions of higher probability
density are covered by smaller discs, and sparser
regions are covered by larger discs. Consequently,
more points are selected from the regions having
higher density.

4. Repeat Step 2 on By until By becomes a null set.

Thus, the x;s selected and the corresponding ryx;
constitute the condensed (reduced) set.

The procedure is illustrated in Fig. 1 in F} — F5 space. As
shown in the figure, each selected point (marked “*”) is at
the center of a disc that covers some region in the feature
space. All other points (marked as “.”) lying within the disc
except the center is discarded. It can be seen that selected
points lying in high-density region have discs of smaller
radii, while points in sparser region correspond to larger
discs, i.e., the data is represented in a multiscale manner
over the feature space.

Remarks.

1. The algorithm not only selects the denser data
points, but does so in a manner such that the
separation between two points is inversely propor-
tional to the probability density of the points. Hence,
regions in the feature space having higher density
are represented by more points than sparser regions.
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This provides a better representation of the data
distribution than random sampling because different
regions of the feature space are given variable
importance on the basis of the probability density
of that region, i.e., the representation is multiresolu-
tion. A technique for performance enhancement and
computational time reduction using such multi-
resolution representation is discussed in [20].

2. The condensed set obtained may be used to obtain
an estimate of the probability density function of the
data. This may be done using the k-NN density
estimation method discussed in Section 3.

3. The parameter k acts as a scale-parameter for the
condensation algorithm. The size of the neighbor-
hood, used for density estimate, as well as the
pruning radii are dependent on k and, therefore,
vary with scale. The smaller the value of k, the more
refined is the scale and vice versa. However,
independent of the chosen scale, the representation
gives adequate importance to the different regions of
the feature space depending on their estimated
densities at that scale. This type of multiresolution
representation helps preserve salient features which
are natural to the data over a wide range of scales. In
many situations, the scale to be used for condensa-
tion is dictated by the application. However, if no
such application specific requirements exist, the
condensed set may be selected from the region
where the error versus scale curve (which is
exponentially decaying in nature) begins to flat off.

4. It may be noted that the choice of k is a classical
problem for k-NN-based methods for finite sample
sets. Theoretically, the value of £ should increase with
the size of the data set (V), but at a slower rate than NV
itself [26]. For data condensation using the proposed
method, it has also been observed that the value of %
should be increased as the data set size N increases to
achieveaconstant condensation ratio (CR), though the
exact nature of the k versus CR curve is distribution
dependent. In the experimental results presented in
Section 5.5, we observe that athigh values of k (i.e., low
values of CR) the k versus CR curve is sufficiently
robust over different data sets.

5. Theaccuracy of k-NN density depends on the value of
k used. Admissible values of k may be obtained from
considerations discussed above. However, for very
small data sets or condensed sets, the choice of lower
admissible limit of & is dictated by the data set size.

5 EXPERIMENTAL RESULTS

In this section, we present the results of experiments
conducted on some well-known data sets of varying
dimension and size. The data sets are described in Table 1.
Among them, the Forest Cover Type data represents forest
cover of 30 m x 30 m cells obtained from US Forest Service
(USFS) Region 2 Resource Information System (RIS). It
contains 581,012 instances having 54 attributes representing
cartographic variables. Each observation is labeled as
belonging to one of the 7 different classes (forest cover
types). This data set is available from the UCI KDD data set

TABLE 1

Data Sets Used in Experiments
Dataset Samples Features Source
Forest Cover 581012 54 UCI KDD Archive
PUMS Census 320000 133 UCI KDD Archive
Satellite Image 262144 4 Reference [27]
Ringnorm 7400 20 Reference (28]
Twonorm 7400 20 Reference [28]
Wisconsin Cancer 684 9 UCI Archive
Pima Indian 768 8 UCI Archive
Vowel 871 3 Reference [29]
Monks-2 432 6 UCI Archive
Iris 150 4 UCI Archive
Norm 500 2 Artificial

archive. Among the other data sets, the Satellite Image data
consists of four 512 x 512 gray-scale images of different
spectral bands obtained by the Indian Remote Sensing
satellite of the city of Calcutta in India. Each pixel
represents a 36.25 m x 36.25 m region. The third large
data set used is the PUMS census data for the Los Angeles
and Long Beach area. The data contains 133 attributes,
mostly categorical, and 320,000 samples were used. This
data set is also available from the UCI KDD archive. The
other data sets, e.g., Wisconsin breast cancer (medical
domain data), Pima Indian (also, medical domain data),
Vowel (speech data), Iris (flower classification data), ring-
norm and twonorm (artificial data), are benchmark data
sets widely used in literature. The Norm data was artificially
generated by drawing 500 iid samples from a normal
distribution with

mean = 0 and covariance matrix = 10
10 {0 1|

The organization of the results is as follows: First, we
present and compare the results concerning error in density
estimate and condensation ratio for all 10 data sets. Next,
we demonstrate the efficacy of our condensation method for
three diverse tasks, namely, classification, clustering, and
rule generation, on the three large data sets. The Forest
Cover Type data is considered to evaluate the classification
performance, the Satellite Image data is considered for
clustering, and the PUMS Los Angeles Census data is
considered for rule generation. Our choice of tasks for the
three large data sets described above has been guided by
studies performed on them in existing literature as well as
the nature of the data sets. Finally, we empirically study the
scalability property of the algorithm in terms of sample
complexity, i.e., the number of samples in the condensed set
required to achieve a particular accuracy level.

5.1 Density Estimation

Here, we compare the error between density estimates
obtained using the original data set and the reduced set.
The proposed algorithm is compared with three represen-
tative data reduction schemes (random sampling, vector
quantization-based, and clustering-based) described below.
Classification-based data reduction methods like Con-
densed Nearest Neighbor are not compared, as error in
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TABLE 2
Comparison of k-NN Density Estimation Error of Condensation Algorithms (Lower CR)
Dataset Multiscale Uniform Scale SOM Random
Algorithm method [17] sampling
CR LLR KLI CR LLR KLI CR LLR KL1 CR LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 3.0 0.001 1.16 0.09 0.16 0.04 3.0 0.001 1.33 0.12 0.20 0.04 3.0 1.21 0.08 0.17 0.004 3.0 1.38 0.27 0.25 0.10
(3.76, 1.72) (2.34, 1.71) (1.69, 1.73) (0.02, 1.81) (2.56, 1.78) | (2.77, 1.77)
Iris 2.3 0.000 1.83 0.08 0.40 0.04 2.5 0.000 2.02 0.7 0.68 0.08 2.5 2.00 0.01 0.44 0.005 2.5 2.85 0.98 1.01 0.23
(3.35, 1.76) (10.38, 1.76) (7.0, 1.81) (3.29, 1.81) (3.44, 1.81) | (8.66, 1.81)
Vowel 3.4 0.00 1.40 0.16 0.10 0.01 3.1 0.001 1.67 0.28 0.165 0.01 3.4 1.43 0.005 0.11 0.00 3.4 1.95 0.55 0.41 0.11
(2.77, 1.74) (15.24, 1.71) (0.88, 1.81) (3.32, 1.81) (3.18, 1.78) | (9.30, 1.81)
Pima 3.2 0.002 1.15 0.11 18.1 1.03 3.2 0.001 1.31 0.17 21.1 4.0 3.2 1.24 0.04 20.4 1.01 3.2 1.99 0.91 25.1 9.1
(2.62, 1.73) (2.11, 1.81) (2.55, 1.78) (5.22, 1.71) (3.04, 1.81) | (2.53, 1.81)
Cancer 4.3 0.002 1.37 017 17.1 1.4 4.3 0.003 1.61 0.28 19.0 1.04 4.3 1.34 0.11 19.4 0.30 4.3 1.805 0.57 24.0 9.01
(2.43, 1.76) (3.80, 1.72) (2.23, 1.81) (5.35, 1.78) (2.43, 1.81) | (2.54, 1.81)
Monk 4.1 0.00 0.64 0.01 0.65 0.04 4.1 0.001 0.70 0.04 0.72 0.05 4.1 0.67 0.01 0.68 0.01 4.1 0.83 0.16 0.88 0.16
(4.82, 1.81) (3.62, 1.72) (7.03, 1.71) (2.41, 1.81) (1.86, 1.81) | (2.61, 1.81)
Tnorm 1.0 0.00 0.43 0.01 1.70 0.10 1.0 0.00 0.57 0.07 1.97 0.17 1.0 0.46 0.00 1.81 0.01 1.0 0.59 0.19 2.01 0.56
(6.56, 1.81) (4.54, 1.73) (9.95, 1.81) (3.30, 1.81) (5.86, 1.81) | (1.81, 1.78)
Rnorm 2.0 0.00 0.40 0.05 2.11 0.22 2.0 0.001 0.54 0.07 2.95 0.22 2.0 0.41 0.001 2.24 0.001 2.0 0.70 0.15 3.01 0.91
(3.10, 1.73) (895, 1.71) (0.63, 1.81) (1.96, 1.81) (6.23, 1.78) (3.19, 1.81)
Forest 0.1 0.001 0.82 0.01 2.71 0.02 0.1 0.004 2.0 0.02 4.7 0.55 0.1 1.40 0.00 3.20 0.01 0.1 3.8 1.7 7.0 2.50
(175, 1.76) (11.99, 1.81) (192.36, 1.81) | (72.68, 1.76) (5.81, 1.81) | (5.69, 1.81)
Sat.Img. 0.2 0.001 0.78 0.01 1.18 0.09 0.2 0.002 0.92 0.02 1.10 0.25 0.2 0.88 0.01 1.28 0.00 0.2 1.09 0.15 1.79 0.27
(20.76, 1.76) | (8.21, 1.81) (23.43, 1.71) (3.68, 1.81) (6.84, 1.81) | (7.10, 1.78)
Ccensus 0.1 0.002 0.27 0.00 1.35 0.10 0.1 0.004 0.31 0.02 1.70 0.15 0.1 0.30 0.01 1.61 0.01 0.1 0.40 0.17 1.90 0.45
(6.63. 1.81) (2.76, 1.72) (14.07, 1.81) (1.98, 1.81) (2.53, 1.81) | (2.52, 1.81)

“CR” denotes condensation ratio in %, “LLR” denotes the log-likelihood error and “KLI” denotes the Kullback-Liebler information number, the
numbers in the parenthesis indicate the computed and tabled values of the test statistic, respectively. A higher computed value compared to tabled
value indicates statistical significance. The values marked bold denote lack of statistical significance.

density estimates is not the optimality criterion for such
methods. The methods compared are: random sampling
with replacement, the self-organizing map (SOM) [14], and
Astrahan’s clustering-based uniform scale method [17]. In
Astrahan’s method (explained in Section 1), for the purpose
of density estimation, we use radius

dy = \/SUpi:L,“,n(Z'nf'j:h,nd(xhXj))

and radius dy =~d; for pruning, where v is a tunable
parameter controlling the condensation ratio. The above
expression for d; produces a radius close to that obtained
using the minimal spanning tree-based method described in
[18]. The following quantities are compared for each
algorithm:

1. The condensation ratio (CR), measured as the ratio
of the cardinality of the condensed set and the
original set, expressed as percentage.

2. The log-likelihood (LLR) ratio for measuring the
error in density estimate with the original set and the
reduced set, as described in (2).

3. The Kullback-Liebler information number (KLI), also
for measuring the error in density estimate ((3)).

In our experiments for each data, 90 percent of the samples
are selected as training set and the remaining samples are
used as test set. Eleven such independent random training-
test set splits are obtained and the mean and standard
deviation (SD) of the errors are computed over 11 runs.
(Sample size of 11 is considered to have a degree of freedom

11 —1 =10, corresponding to which test statistics are
available in tables.) Tests of significance were performed
for the inequality of means (of the errors) obtained using the
proposed algorithm and the other condensation schemes
compared. Since both mean pairs and the variance pairs are
unknown and different, a generalized version of t-test is
appropriate in this context. The above problem is the
classical Behrens-Fisher problem in hypothesis testing, a
suitable test statistic is described and tabled in [30] and [31],
respectively.1 In Tables 2, 3, 4, and 5, we report, along with
the individual means and SDs, the value of test statistic
computed and the corresponding tabled values at an error
probability level of 0.05. If the computed value is greater
than the tabled value, the means are significantly different.

The experiments have been performed for different
values of condensation ratios and for each algorithm.
However, in Tables 2 and 3, comparison is presented on
the basis of error in density estimate for similar values of
CR. Alternatively, one could have also compared CR for
similar values of error in density estimate. In Tables 2 and 3,
results are presented for two different sets of values of CR,
about 0.1-3 percent and about 5-20 percent (of the original
data set and not the training set), respectively. Experiments
were also performed for other values of condensation ratio,
e.g., 40 percent and 60 percent for space limitations, we do

Ty —Ty

VAisi+s? ’

means, sj,sy the standard deviations and \; = 1/ny, Ay = 1/ny, ny,ny are

1. The test statistic is of the form v = where Z,,T, are the

the number of observations.
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TABLE 3
Comparison of k-NN Density Estimation Error of Condensation Algorithms (Higher CR)
Dataset Multiscale Uniform Scale SOM Random
Algorithm method [17] sampling
CR LLR KLI CR LLR KLI CR LLR KLI CR LLR KLI
Mean SD Mean SD Mean ST Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 20 0.001 0.38 0.001 0.08 0.00 20 0.002 0.43 0.002 0.10 0.001 20 0.10 0.001 0.09 0.00 20 0.19 0.09 0.11 0.01
(74.16, 1.76) | (61.59, 1.78) (46.9, 1.72) (74.16, 1.76) (4.05, 1.81) | (9.94, 1.81)
Iris 20 0.00 0.82 0.001 0.19 0.001 20 0.001 0.91 0.001 0.25 0.001 20 0.87 0.001 0.22 0.001 20 1.04 0.40 0.40 0.16
(211, 1.72) (140, 1.72) (117, 1.72) (9.90, 1.81) (1.82, 1.81) | (4.33, 1.81)
Vowel 20 0.001 0.88 0.07 0.05 0.001 20 0.002 0.97 0.10 0.09 0.001 20 0.90 0.001 0.07 0.001 20 1.25 0.25 0.21 0.04
(2.61, 1.74) (93.8, 1.72) (0.93, 1.81) | (46.90, 1.72) (4.73, 1.81) | (13.2, 1.81)
Pima 20 0.001 0.50 0.05 8.8 0.32 20 0.002 0.62 0.09 10.0 0.81 20 0.59 0.002 9.1 0.10 20 0.81 0.25 11.03 4.1
(3.86, 1.78) (4.56, 1.76) (5.96, 1.81) (2.96. 1.81) (4.16, 1.81) | (4.21, 1.81)
Cancer 20 0.001 0.68 0.05 9.1 0.4 20 0.002 0.81 0.07 10.4 0.70 20 0.77 0.01 9.8 0.01 20 0.92 0.22 11.9 2.09
(5.01. 1.76) (5.34, 1.74) (5.85, 1.81) (5.63, 1.81) (3.52, 1.81) | (4.36, 1.81)
Monk 20 0.002 0.31 0.001 0.32 0.005 20 0.002 0.34 0.002 0.35 0.002 20 0.32 0.001 0.33 0.001 20 0.42 0.04 0.44 0.04
(44.5, 1.78) (18.47, 1.78) (33.01, 1.81) | (6.40, 1.81) (9.11, 1.81) | (9.87, 1.81)
Tnorm 20 0.000 0.22 0.001 0.80 0.005 10 0.001 0.29 0.005 1.01 0.02 10 0.25 0.00 Q.88 0.01 10 0.35 0.08 1.21 0.17
(45.33, 1.81) | (38.61, 1.81) (70.33, 1.713 | (26.40, 1.81) (5.40, 1.81) | (7.99, 1.81)
Ruorm 20 0.000 0.25 0.005 0.91 0.002 10 0.001 0.29 0.01 1.07 0.07 10 0.26 0.00 1.01 0.00 10 0.32 0.09 1.21 0.35
(11.86, 1.78) | (7.57, 1.81) (6.63, 1.81) (32.52, 1.81) (2.57, 1.81) | (2.84, 1.81)
Forest 5 0.001 0.54 0.003 0.91 0.002 5 0.002 0.62 0.005 1.71 0.007 5 0.37 0.002 1.04 0.005 3 1.72 0.25 4.91 1.17
(37.5, 1.72) (364, 1.81) (18.4, 1.78) (80.0. 1.76) (15.6, 1.81) | (11.4, 1.81)
Sat.Img. 5 0.001 0.11 0.003 0.71 0.01 3 0.001 0.50 0.007 0.81 0.02 3 0..147 0.002 0.80 0.01 3 0.62 0.10 0.92 0.14
(34.70, 1.76) | (14.83, 1.76) (36,93, 1.78) | (21.10, 1.71) (6.95, 1.81) | (4.96, 1.81)
Ccensus 5 0.002 0.17 0.001 0.80 0.01 5 0.002 0.22 0.002 0.91 0.007 5 0.19 0.00 0.88 0.005 5 0.28 0.01 1.00 0.17
(71.16, 1.76) | (27.98, 1.78) (16.90, 1.81) | (21.95, 1.78) (36.3, 1.81) | (3.89, 1.81)

not present those results. The error values were computed
using (2) and (3) with same value of k as used for
condensation. It may be noted that optimal choice of £ is
a function of the data size.

It is seen from the results (Tables 2 and 3) that our
multiscale method achieves consistently better performance
than Astrahan’s method, random sampling, and SOM for
both sets of condensation ratios. For each condensation ratio
(two condensation ratios are considered), for each index of
comparison (two indices are considered) of density estima-
tion error, and for each data set (eleven data sets including
three large data sets), the proposed method is found to
provide better performance than each of the other three data
condensation methodologies compared. Regarding statistical
significance tests it can be seen from Tables 2 and 3 that, out of
132 comparisons, the proposed method is found to provide
significantly better results in 127 comparisons. Only while
comparing with SOM for the Norm, Vowel, and Rnorm data
sets, the performance of the proposed method was found to
be better, but not significantly. Experiments were performed
for other values of the condensation ratio and similar
performance was obtained.

For the purpose of comparison, the condensed sets
obtained using different algorithms were also used for
kernel density estimates. The kernel estimate is given by
Bo(x) =1/n > i1 K(x,y;), where y; are points belonging to
the reduced set and K{(,) is the kernel function. We used a
Gaussian kernel of the form

K(xy)) = [(022m) 7] exp{ - gizetxn) .

where d is the dimension, h bandwidth, and é(x,y;) the
Euclidean distance between x,y;. The bandwidth h was
chosen as

h = \/Supi:L.wn,(inszlﬂ.,nd(yia y.])):

where y;, y; are points in the condensed set. The reason for
selecting the above bandwidth can be explained in terms of
minimal spanning trees [18]. The bandwidth satisfies both
the conditions for consistent kernel density estimation. The
error measures are presented in Tables 4 and 5 for the same
two groups of condensed sets as considered in Tables 2 and
3, respectively. It is seen from Tables 4 and 5 that, when
using kernel estimates, the proposed algorithms produces
less error than all the related schemes for all data sets.
Statistical significance tests are also presented for all the
comparisons and, in 129 of 132 comparisons, the proposed
method performs significantly better than the other three
algorithms.

We also compared our algorithm with Fukunaga’s
nonparametric data condensation algorithm [19] only for
the Norm data set. For a log-likelihood error of 0.5, the
condensation ratio achieved by this method was 50 percent,
while the corresponding figure was 23.4 percent for our
method. On the Norm data set, while the CPU time required
by the proposed algorithm was 8.10 seconds, the above
mentioned algorithm required 2,123.05 seconds.

In Fig. 3, we plot the points in the condensed set along with
the discs covered by them at different condensation ratios for
the proposed algorithm and for Astrahan’s method. The
objective is to demonstrate the multiresolution characteristics
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TABLE 4
Comparison of Kernel (Gaussian) Density Estimation Error of Condensation Algorithms

Dataset Multiscale Uniform Scale SOM Random
Algorithm method [17] sampling
LLR KLI LLR KLI LLR KLI LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 1.04 0.07 0.14 0.03 1.15 0.09 0.17 0.03 1.10 0.07 0.15 0.004 1.29 0.25 0.23 0.09
(3.05, 1.74) (2.24, 1.74) (1.92, 1.72) (1.04, 1.81) | (3.05, 1.81) | (3.67, 1.78)
Iris 1.72 0.05 0.37 0.02 1.91 0.14 0.59 0.04 1.88 0.01 0.41 0.002 2.78 0.95 0.98 0.17
(4.04, 1.78) (15.56, 1.76) | (9.92, 1.81) (6.29, 1.81) (3.52, 1.81) | (11.27, 1.81)
Vowel 1.35 0.09 0.09 0.005 1.61 0.17 0.16 0.01 1.38 0.002 0.10 0.00 1.88 0.47 0.37 0.08
(4.27, 1.76) (19.8, 1.76) (1.05, 1.81) | (6.32, 1.81) (3.50, 1.81) | (11.05, 1.81)
Pima 1.07 0.08 17.2 0.81 1.27 0.11 19.9 2.2 1.18 0.01 19.1 0.88 1.91 0.90 23.2 8.9
(4.65, 1.74) (3.64, 1.78) (4.31, 1.81) (5.02, 1.72) (2.94, 1.81) | (2.12, 1.81)
Cancer 1.34 0.16 16.8 1.4 1.57 0.20 18.8 0.91 1.51 0.09 19.1 0.47 1.78 0.55 23.3 8.80
(2.84, 1.74) (3.78, 1.78) (2.92, 1.78) (4.93, 1.79) (2.43, 1.81) | (2.31, 1.81)
Monk 0.62 0.01 0.63 0.04 0.68 0.03 0.71 0.04 0.66 0.01 0.67 0.01 0.82 0.11 0.87 0.14
(6.00, 1.78) (4.47, 1.74) (8.94, 1.74) (3.08, 1.81) (6.00, 1.81) | (5.21, 1.81)
Tnorm 0.42 0.01 1.64 0.05 0.56 0.05 1.92 0.11 0.45 0.00 1.78 0.001 0.57 0.10 1.97 0.44
(8.68, 1.81) (6.51, 1.74) (9.49, 1.81) (5.53, 1.81) (4.72, 1.81) | (2.33, 1.81)
Rnorm 0.38 0.03 2.02 0.17 0.53 0.05 2.80 0.19 0.40 0.001 2.19 0.01 0.69 0.09 2.89 0.82
(8.13, 1.76) (6.51, 1.74) (9.49, 1.81) (5.53, 1.81) (4.72, 1.81) | (2.33, 1.81)
Forest 0.80 0.007 2.69 0.01 1.95 0.01 4.4 0.53 1.38 0.00 3.10 0.01 3.70 1.43 7.0 2.50
(325, 1.74) (10.2, 1.81) (366, 1.81) (91, 1.72) (6.55, 1.81) | (5.45, 1.81)
Sat.Img 0.75 0.005 1.09 0.02 0.88 0.01 1.28 0.09 0.82 0.005 1.22 0.00 0.98 0.10 1.72 0.22
(36.77, 1.76) | (6.52, 1.81) (31.3, 1.72) (20.55, 1.81) | (7.26, 1.81) | (9.02, 1.81)
Census 0.25 0.00 1.46 0.04 0.29 0.01 1.59 0.09 0.27 0.005 1.52 0.005 0.37 0.10 1.82 0.40
(12.6, 1.81) (4.17, 1.78) (12.6, 1.81) (4.71, 1.81) (3.79, 1.81) | (2.83, 1.81)

(Lower CR, same condensed set as Table 2.)

of the algorithm in contrast to a fixed resolution method. It is
observed that our algorithm represents the original data in a
multiresolution manner; the denser regions are more
accurately represented compared to the sparser regions.
The regions covered by the representative points are uniform
for Astrahan’s method [17]. It may be observed from the
figure that multiscale representation is most effective in terms
of error when the condensed set is sparse, i.e., the condensa-
tion ratio is low (Fig. 3a).

5.2 Classification: Forest Cover Data

As mentioned in Section 5, the data represents forest cover
types of 30 m x 30 m cells obtained from US Forest Service
(USFS) Region 2 Resource Information System (RIS). There
are 581,012 instances, with 54 attributes representing
cartographic variables (hillshade, distance to hydrology,
elevation, soil type, etc.), of which 10 are quantitative and
44 binary. The quantitative variables were scaled to the
range [0,1]. The task is to classify the observations into
seven categories representing the forest cover types,
namely, Spruce/Fir, Lodgepole Pine, Ponderosa Pine,
Cottonwood /Willow, Aspen, Douglas-fir, Krummholz.
About 80 percent of the observations belong to classes
Spruce/Fir and Lodgepole Pine.

We have condensed the training set using different
condensation algorithms including the proposed one. The
different condensed sets obtained were then used to design
a kNN classifier (1-NN for LASM) and a multilayer

perceptron (MLP) for classifying the test set. The goal was
to provide an evidence that the performance of our
multiresolution condensation algorithm does not depend
on the final use of the condensed set. The following data
reduction methods are compared:

1. Random sampling with replacement to obtain a
specific condensation ratio. The condensed set is a
representative of the underlying distribution, but, at
low condensation ratios (say, 0.1 percent), it was
found to have high variance (about 25 percent of the
mean value of classification accuracy).

2. Stratified sampling. Instead of sampling uniformly
over the entire population, subclasses of interest
(strata) are identified and treated differently. For the
given data, we considered class stratification, i.e., the
number of samples selected from each class is
proportional to the size of the class in the original set.

3. Condensed nearest neighbor (CNN) [7]. The con-
densation ratio is varied by changing the parameter
k used for k-NN classification. The condensed set
obtains a high concentration of points near the class
boundaries and, hence, distorts the distribution. It
may be mentioned that arbitrarily low-condensation
ratios cannot be achieved using CNN.

4. Local asymmetrically weighted similarity metric
(LASM) [9]. The condensed set is obtained by random
sampling, but the metric used for nearest neighbor
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TABLE 5
Comparison of Kernel (Gaussian) Density Estimation Error of Condensation Algorithms
Dataset Multiscale Uniform Scale SOM Random
Algorithm method [17] sampling
LLR KLI LLR KLI LLR KLI LLR KLI
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Norm 0.35 0.001 0.07 0.00 1.40 0.001 0.09 0.001 0.37 0.001 0.08 0.001 0.47 0.05 0.10 0.01
(117, 1.72) (66, 1.81) (47, 1.72) (33.1, 1.81) (7.95, 1.81) (9.94, 1.81)
Iris 0.79 0.001 0.17 0.001 0.88 0.001 0.23 0.001 0.86 0.001 0.21 0.001 1.00 0.28 0.37 0.10
(211, 1.72) (140, 1.72) (140, 1.72) (93.8, 1.72) (2.48, 1.81) (6.63, 1.81)
Vowel 0.86 0.05 0.04 0.001 0.95 0.09 0.08 0.001 0.88 0.001 0.05 0.001 1.17 0.22 0.20 0.04
(2.90, 1.74) | (93.8,1.72) | (1.32, 1.81) | (23.45, 1.72) | (4.55, 1.81) (13.26, 1.81)
Pima 0.47 0.04 8.20 0.28 0.60 0.07 9.10 0.54 0.56 0.001 8.8 0.04 0.80 0.17 14.00 4.10
(5.34, 1.74) | (4.90, 1.74) | (7.46, 1.81) (7.03, 1.81) (6.27, 1.81) (4.68, 1.81)
Cancer 0.67 0.04 8.70 0.35 0.79 0.05 9.80 0.76 0.74 0.005 9.50 0.01 0.90 0.19 11.5 2.01
(6.21, 1.76) | (4.66, 1.74) | (5.75, 1.81) (7.57, 1.81) (3.92, 1.78) (4.55, 1.81)
Monk 0.30 0.001 0.31 0.004 0.34 0.001 0.34 0.001 0.31 0.001 0.32 0.001 0.41 0.03 0.44 0.02
(93.8, 1.72) | (24.1, 1.81) | (23.4, 1.72) (8.04, 1.78) (12.15, 1.81) | (21.14, 1.81)
Tnorm 0.21 0.001 0.78 0.004 0.28 0.004 0.99 0.01 0.23 0.00 0.86 0.005 0.34 0.05 1.19 0.10
(56.3, 1.81) | (64.6,1.78) | (66.3, 1.81) (41.4, 1.76) (8.62, 1.81) ( 13.5, 1.81)
Rnorm 0.23 0.002 0.88 0.001 0.28 0.005 1.02 0.05 0.24 0.001 0.97 0.001 0.31 0.05 1.17 0.28
(30.8, 1.78) | (9.28, 1.81) | (14.8, 1.78) (211, 1.72) (4.64, 1.81) (3.43, 1.81)
Forest 0.53 0.004 0.90 0.002 0.61 0.004 1.70 0.005 0.55 0.001 0.98 0.004 1.70 0.17 4.90 1.00
(46.9, 1.72) | (492, 1.78) (16.08, 1.79) | (59.3, 1.74) (22.8, 1.81) (13.2, 1.81)
Sat.Img 0.40 0.004 0.70 0.005 0.47 0.007 0.80 0.01 0.45 0.001 0.77 0.005 0.59 0.05 0.90 0.10
(28.8, 1.74) | (29.6, 1.74) | (40, 1.78) (32, 1.72) (12.5, 1.81) (6.62, 1.81)
Census 0.16 0.001 0.78 0.01 0.22 0.001 0.91 0.005 0.17 0.00 0.87 0.004 0.27 0.01 0.98 0.11
(140, 1.72) (35, 1.76) (33.1, 1.81) (27.7, 1.78) (36.3, 1.81) (6.00, 1.81)
(Higher CR, same condensed set as Table 3.)

classification varies locally and is learned from the
training set. The value of reinforcement rate used is
a = 0.2 and the punishment rate used is 8 = 1.0.
5. Method of Astrahan [17]. As explained in the last
section, this is an uniform scale density-based method.
6. Learning vector quantization [14]: We have consid-
ered the LVQ3 version of the algorithm for compar-
ison. Initial codebook vectors obtained using a self-
organizing map are refined here using the LVQ3.
Asin the case of density estimate experiments (Section 5.1),
we have selected 90 percent of the data randomly as training
set and the remaining data was used as test set. Such data
splits were performed 11 times independently and the mean
and standard deviation (SD) of the classification accuracy on
test set and condensation ratios (CR) obtained for each such
splits are presented. Statistical significance tests were also
performed to test the inequality of means of the classification
accuracy. Asbefore, we present the computed value of the test
statistic and the tabled value if the computed value is greater
than the tabled value the means are significantly different. We
also present the CPU times required by the condensation
algorithms on a Digital Alpha 800MHz workstation. The
figures shown here are the average values taken over 11 runs.
In Table 6, we compare the effect of each method on
classification accuracy for condensation ratios of 0.1 percent
and 5 percent. Note that the lowest condensation ratio that
could be achieved for the Forest data using CNN is

3.1 percent, hence, comparison with CNN is presented only
for the 5 percent case.

It can be seen from Table 6 that the proposed methodol-
ogy achieves higher classification accuracy than the other
methods and that this difference is statistically significant.
For classification, the same value of k as used for
condensation is considered, except for LASM, where 1-
NN is used. For classification using MLP, the proposed
method and LVQ performs similarly. Results for LASM are
not presented for MLP since, if no specialized metric is
used, LASM represents just a random subset. The perfor-
mances of both random sampling and stratified sampling
were found to be catastrophically poor. The uniform scale
method of Astrahan performs poorer than the proposed
method, LVQ and LASM.

5.3 Clustering: Satellite Image Data

The satellite image data contains observations of the Indian
Remote Sensing (IRS) satellite for the city of Calcutta, India.
As mentioned in Section 5, the data contains images of four
spectral bands. We present in Fig. 4a, for convenience, the
image for band 4. Here, the task is to segment the image
into different land cover regions, using four features
(spectral bands). The image mainly consists of six classes
e.g., clear water (ponds, fisheries), turbid water (the river
Ganges flowing through the city), concrete (buildings,
roads, airport tarmacs), habitation (concrete structures but
less in density), vegetation (crop, forest areas), and open
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Fig. 3. Plot of the condensed points (of the Norm data) for the proposed
algorithm and Astrahan’s method, for different sizes of the condensed
set. Bold dots represent a selected point and the discs represent the
area of Fy — F, plane covered by a selected point at their center
Left: Mulitscale method. Right: Astrahan’s method.

spaces (barren land, playgrounds). Fuzzy segmentation of
the image is reported in detail in [27].

Using our methodology, we extract six prototype points
from the entire data set. The remaining points are placed in
the cluster of the prototype point to whose sphere (disc) of
influence the particular point belongs. Thus, the condensa-
tion process implicitly generates a clustering (partition/
segmentation) of the image data.

We compare the performance of our algorithm with two
other related clustering methods, namely, k-means algo-
rithm [26] and Astrahans density-based uniform scale
method [17]. For the k-means algorithm, we have consid-
ered k = 6 since there are six classes and the best result (as
evaluated by a cluster quality index) obtained out of
10 random initializations is presented. In Astrahan’s
method, six prototype points are obtained, the remaining
pixels are then classified by minimum distance classifica-
tion with these six points.

The results are presented in Figs. 4b, 4c, 4c, and 4d. Fig. 4d
is seen to have more structural details compared to Figs. 4b
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and 4c. From the segmented image obtained using the
proposed method, more number of landmarks known from
ground truths can be detected by visual inspection. The
segmentation results of the remote sensing images obtained
above are also evaluated quantitatively using an index (.
Let n; be the number of pixels in the ith (i =1,...,¢)
region obtained by the segmentation method. Let X;; be the
vector (of size 4 x 1) of the gray values of the jth pixel
(j=1,...,n;) for all the images in region i, and X; the mean
of n; gray values of the ith region. Then, § is defined as [27]:

_ i (X — X)" (X5 — X)
Soia o (X — X)) (X — X))

where n is the size of the image and X is the mean gray
value of the image. It may be noted that X;;, X, and X, are
all 4 x 1 vectors.

Note that the above measure is nothing but the ratio of
the total variation and within-class variation and is widely
used for feature selection and cluster analysis [27]. For a
given image and ¢ (number of clusters) value, the higher the
homogeneity within the segmented regions, the higher the
B value. The proposed method has the highest 5 as can be
seen in Table 7.

B

(4)

5.4 Rule Generation: Census Data

The original source for this data set is the IPUMS project. As
mentioned in Section 5, we use 320,000 samples. The data
contains 133 attributes, mostly categorical (integer valued).
A study commonly performed on census data is to identify
contrasting groups of populations and study their relations.
For this data, we investigate two groups of population,
namely, those who have undergone/not undergone “higher
education,” measured in terms of number of years in college.
It is interesting and useful to generate logical rules
depending on the other available attributes which classify
these groups. We consider the attribute educational record,
“edrec,” and investigate two sets of population, one having
more than 41 years of college education, and the other below
that. The task is to extract logical inference rules for the sets.

As a similarity measure between two samples, we use
the Value Difference Metric (VDM) [8]. Using the VDM, the
distance between two values = and y of a single attribute a
is defined as

¢ Noge Naye ?
vdmg(z,y) = Zuzl(]\}“ N ) ; (5)
a,r ay

where N, , is the number of times attribute a had value z;
N, ... is the number of times attribute a had value z, and the
output class was ¢; and C is the number of output classes
(two in our case). Using this distance measure, two values
of an attribute are considered to be closer if they have more
similar classification, regardless of the magnitude of the
values. Using the value difference metric, the distance
between two points having m independent attributes is
defined as

VDM(x,y) = /" vdm? (xa.y,)- (6)

We use the popular C4.5 [32] program to generate logical
rules from the condensed data sets. We restrict the rule sizes
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TABLE 6

Classification Performances for Forest Covertype Data
Condensation Condensation Classification Classification CPU
Algorithm Ratio (%) Accuracy (%) Accuracy (%) time

using k-NN using MLP (hrs)

Mean SD Mean SD (test stat.) Mean SD (test stat.)
Proposed method 0.1 0.004 83.10 1.90 70.01 0.90 4.29
LVQ3 0.1 - 75.01  1.01 (12.50, 1.76) 68.08 0.80 (3.33, 1.72) 2.02
LASM 0.1 - 74.50 2.52 (9.08, 1.72) (1-NN) | - - 5.90
Astrahan 0.1 0.004 66.90 2.10 (18.97, 1.72) 59.80 0.53 (32.81, 1.73) 4.10
Stratified sampling 0.1 - 44.20 5.9 (20.81, 1.81) 36.10 5.95 (18.75, 1.81) -
Random sampling 0.1 - 37.70 10.04 (14.73, 1.81) 29.80 8.2 (16.16, 1.81) -
Proposed method 5.0 0.01 97.00 1.81 80.02 1.40 4.52
LvQs3 5.0 - 88.01 1.04 (14.34, 1.76) 74.00 0.92 (11.99, 1.73) 4.05
LASM 5.0 - 87.55  2.50 (10.17, 1.73) (1-NN) | - - 7.11
Astrahan 5.0 0.01 82.09 2.53 (16.05, 1.73) 66.00 1.4 (23.48, 1.71) 4.40
CNN 5.05 1.01 81.17 3.80 (2.64, 1.73) 75.02 4.1 (1.52, 1.78) 5.51
Stratified sampling | 5.0 - 55.20 7.1 (18.92, 1.81) 40.10  7.01 (18.52, 1.81) | -
Random sampling 5.0 - 44.70  8.02 (21.09, 1.81) 35.80 8.8 (16.40, 1.81) -

(c) (d)

Fig. 4. IRS images of Calcutta. (a) Original Band 4 image and segmented images using (b) k-means algorithm, (c) Astrahan’s method, and
(d) proposed multiscale algorithm.



MITRA ET AL.: DENSITY-BASED MULTISCALE DATA CONDENSATION

TABLE 7
£ Value and CPU Time of Different Clustering Methods

Method k-means | Astrahan’s | Proposed
3 5.30 7.02 9.88
CPU time (hrs) | 0.11 0.71 0.75

upto conjunction of three variables only. As before, 90 percent
of the data was selected as training set and the rules are
evaluated on the remaining data. Eleven such splits were
obtained and the means and standard deviations (SD) are
presented.

For the purpose of comparison with our method, the
C4.5 program was also run on condensed sets obtained
using: Random sampling, Stratified sampling, Density-
based Uniform Scale method of Astrahan [17], and
Condensed Nearest Neighbor. Following quantities are
computed in Table 8:

1. Condensation Ratio (CR),
Number of Rules Generated,

3. Accuracy of Classification on test set (we also
present statistical tests of significance for comparing
the other methods with the proposed method),

4. Percentage of uncovered samples, and

5. CPU time.

The comparison is performed for a constant condensation
ratio of 0.1 percent. However, for CNN a CR of only 2.2 percent
could be achieved by varying k. The classification accuracy of
the proposed method is higher than random sampling,
stratified sampling, and CNN; it is also significantly higher
than Astrahan’s method. It is also observed that the
uncovered region is minimum for the rules generated from
the subset obtained by the proposed algorithm. The rule base
size is far smaller than random, statistical sampling, and
Astrahan’s method. Therefore, the rules generated from the
condensed set are compact, yet have high accuracy and cover
as compared to other sets.

5.5 Experiments on Scalability

The scaling property of the condensation algorithm is also
studied in a part of the experiment. For this, we examine the
sample complexity of the algorithm, i.e., the size of condensed
set required to achieve an accuracy level (measured as error
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in density estimate). In Fig. 5, the log-likelihood error is
plotted against the cardinality of the condensed set (as a
fraction of the original set), for three typical data sets,
namely, Norm (of known distribution), Vowel (highly
overlapping), and Wisconsin (large dimension). The solid
curve is for the proposed methodology, while the dotted
one is for random sampling. It can be seen that the
proposed methodology is superior to random sampling.

5.6 Experiments on Choice of k

In Section 4, we have described the role of k in the proposed
algorithm. As k increases, the size of condensed set reduces
and vice versa. Here, we provide some experimental results
in support of the discussion. The effect of varying parameter k&
on the condensation ratio (CR) is shown in Fig. 6, for the three
aforesaid data sets (Section 5.6). It can be observed that,
for values of k in the range ~ 7-20, the curves attain low
CRvalues and are close to each other for all the three data sets.
For the Vowel data, a CR value of 3.4 percent was obtained at
k = 31. It may be noted that the curve for the Norm (smallest)
data set is shifted to the left compared to the other two curves.

6 CONCLUSIONS AND DISCUSSION

This paper presented an algorithm for nonparametric data
condensation. The method follows the basic principles of
nonparametric data reduction present in literature, but the
sample pruning step is done in a multiresolution manner
rather than with uniform resolution. It is based on the
density underlying the data. The proposed approach was
found to have superior performance as compared to some
existing data reduction schemes in terms of error in density
estimate both for small and large data sets having
dimension ranging from 2-133. Classification, clustering,
and rule generation performances using the condensation
algorithm were studied for three large data sets. The
algorithm does not require the difficult choice of radii d;
and dp, which are critical for Astrahan’s method, only the
choice of parameter k is necessary. Choice of k is guided by
the size of the original data set and the accuracy/
condensation ratio desired. The parameter k also provides
a parameterization of the concept of scale in data
condensation and the scales induced follow the natural
characteristics of the data and, hence, efficient.

As far as the computational complexity is concerned, the
algorithm can be considered to have three computational

TABLE 8
Rule Generation Performance for the Census Data

Condensation CR(%) # of Rules Classification Uncovered CPU
method (rounded to accuracy (%) samples (%) time

integer) (%) (hrs)

Mean SD Mean SD Mean SD (Test Stat.) Mean SD

Random sampling 0.1 - 448 88 32.1 8.8 (8.43, 1.81) 40.01 5.5
Stratified sampling 0.1 305 45 38.8 5.5 (9.71, 1.78) 37.0 5.5
CNN 2.2 0.050 270 53 32.0 4.1 (17.55, 1.78) 55.0 4.1 2.80
Astrahan [17] 0.1 0.004 245 50 48.8 4.0 (4.89, 1.78) 25.0 3.1 4.22
Proposed 0.1 0.004 178 30 55.1 1.5 20.2 1.80 4.10

Figures in parentheses indicate the computed value of test statistic and tabled value, respectively.
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with the corresponding for (a) the Norm data, (b) Vowel data, and (c) Wisconsin Cancer data.

steps. In the first step, for each point in the original set, the
distance of the kth nearest neighbor is computed. In the
second step, the point having the minimum value of the
distance is selected and in the third step, all points lying
within a radius of 27,4, of a selected point is removed. It is
observed that the second and third steps increase in speed
since the size of the original set decreases progressively (the
rateis dependent on kand the data distribution). The first step
is the most time consuming one and it requires (O(kN?)),
where N is the number of data points. A way of reducing the

= Vowel
- - Wisconsii
45 - Norm

(%)

n
il
T

condensation ratio

Fig. 6. Variation of condensation ratio CR (%) with k.

time complexity of nearest-neighbor calculation is to use
approximate nearest neighbor (ANN) computations
using specialized data structures like k-d trees [33].
Probabilistic nearest-neighbor search methods have also
been suggested [34], having expected O(1) time complexity,
and O(N) storage complexity.

The guiding principle of our algorithm is to minimize the
error in terms of density estimate rather than the classification
score. The justification is to obtain a generic representative
condensed set independent of the task performed with it
later. In many data mining applications, the final task is not
always known beforehand or there may be multiple tasks to
be performed. In the above circumstances, such a condensed
representation is more useful. We have performed experi-
ments to show that a condensed set obtained by our method
performs well for diverse data mining tasks such as
classification, clustering, and rule generation.
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